34 Technical Exclusive July 2018 www.PowderBulkSolids.com
Dry Flow Meter
Continuous Weighing: The Big Picture
By Clarence Richard, Clarence Richard Co.
Weighing continuously is the eyes it takes to satisfy the mind on whether process control is delivering to our expectation or not. Without the data, we are blindly shooting in ‘Blue Sky.’ When deciding on the accuracy requirements of the weighing system, consider what accuracy range is acceptable, from overkill to what you can get by with. When continuous weigh measurement is important, determining where in the process weight measurement is possible is the next step.
Some continuous weigh solutions are considerably less expensive than batch weighing into hoppers, trucks, and rail cars. Consider the expense of a rail car scale compared to a $10,000 continuous weigh scale/Solids Impact Flow Meter. Shop around for manufacturers and engineers of measuring devices and control systems. Pick their brain on what the market can supply and what support they will provide. Support is just as important as the potential performance the scale system delivers. Continuous weighing is difficult. Once the current weight is known, that information is soon obsolete. The information is useless unless data is monitored and the process control is adjusting itself to the information delivered.
Over time, the industry has developed more options from which to choose. Some of those choices are dictated by the application. Retrofit applications are usually more difficult to master over new applications. The new process design can usually be worked around standard model scales. And when a scale/impact flow meter does not exist for an application, custom design engineers may come up with a design with an acceptable outcome. We have seen designs that include an adaptive weighing system that corrects a volumetric blending signal to be corrected by the continuous weigh device. The device adjusts the volumetric signal to the volumetric blending control. This system was added without any hardware/ software changes to the plant volumetric blending control. In another instance, we have seen a system that required both volumetric metering and gravimetric weighing to accomplish the job that could not be done alone, by either. Both systems have their pros and cons. The combination of both systems’ positive features was enough to get the job done that neither could have done alone. Thinking outside the box sometimes is a plus.
Applications for “weighing on the fly” include batching, blending, inventory, and truck/railcar/ barge load out. Continuous weigh scale indicators (Solids Impact Flow Meter) display both rate and accumulated weight much like a car has a speedometer and odometer displaying miles/hour and accumulated miles. The speedometer info can be used for cruise control much like the rate signal (tn/hr, lb/min, etc.) can be used for used blending control. The rate signal is electronically smoothed (dampened) more so in blending systems than in other applications. The process is looking for a steady rate signal to help keep the process control system stable and minimize hunting.
Batching control takes advantage of the accumulated weight and will be compared to a batch set point. When both the weight and set point match, the system feed may slow the feed or shut the feed altogether. Slowing the feed first, may help to reduce over shooting the set point. A second batch set point can be used to stop the feeding. Load out applications are much like batching applications and can use the accumulated weight signal to stop the filling once a set point has been reached. Variables in the process may affect desired performance. Air flow, excessively varying flow rates, environment, scale placement may be a factor. Material temperature, moisture, particulate size, and flowability are considerations. Material abrasiveness and hours of operation affect maintenance. The means of feeding to and discharging from the scale is part of the process. Space for a scale may be too confining for some choices.
Once an Impact Flow Meter is placed, the scale will be calibrated under actual production conditions. The actual production conditions with all process variables takes into consideration during calibration all of the factors affecting accuracy. Material is run through the dry solids flow meter and the accumulated weight is compared to a known weight fed to the scale or collected after the scale. With this data, the rate span factor will be adjusted to a factor corrected to the material flow rate. The rate signal is integrated mathematically, which produces the accumulated weight. Rate signals and accumulated weight signal outputs are available for process control use.
Scale repeatability is most important. It is recommended that the first three comparisons are documented with no changes to the span factor. Much like sighting in a rifle, a tight shot group is important. The reference scale net weight is divided by the accumulated scale totalizer weight and that ratio is multiplied by the existing span factor to give us the new desired span factor. If the first test results were 3.38% from the known weight, we would be happy if the following two were 2.79% and 3.08%. The average repeatability error is 3.08%. Consequently, the error shot group would be a respectable +.3%. This would be acceptable to most applications. This tells us, at one flow rate (300 lb/ min), we can be very accurate. Keep in mind we may be calibrating a scale to reference scale with its own built-in error. We mention this because the calibration is dependent on the performance of the reference scale. Now that a tight shot group has been established, we can adjust wind age and elevation to the bull’s eye. In test #4, perform the material calibration in the mid production rate range. As illustrated, the error is reduced to nothing.
Flow rates in a process can change within a certain range. Adjust the rate up (400 lb/min) and down (200 lb/min) to the minimum and maximum expected flow rates. Perform the fifth and sixth material calibration at the lower and upper production rate range. Document those tests and analyze the errors for linearity acceptability. As illustrated, the total accuracy is +.5%. Normally this is acceptable. If unacceptable, review this installation and process. If the accuracy is not acceptably linear throughout the range and the scale remains repeatable, the rate signal can be electronically profiled to make the scale performance linear. NTEP installations may require the linear profiling and/or controlling the feed rate to a specific flow.
The calibration spreadsheet illustrated is a great tool and is provided free of charge by some scale providers for documenting the above material calibration process. The spreadsheet organizes one test after another and does the error math and the corresponding new span number math. This tool comes in handy for troubleshooting problems as well. Scale/Dry Solids Flow Meter providers often supply application data sheets to collect information potential users usually don’t think about. There are nearly a dozen ways to continuously weigh. Finding your best method is your task at hand.
Clarence Richard is continuous weigh control/impact flow meter applications engineer, Clarence Richard Co., Minnetonka, MN. For more information, call 800-372-7731 or visit www.EzFloWeighing.com
Instrumentation: Trust but Verify
By Clarence Richard, Clarence Richard Co.
Verification is an important step in any process. It’s the law when it comes to OSHA lockout and confined space procedures. We do it when crossing the street. We do it when we look at our restaurant receipt. I do it when talking with people. I do it when looking at your instrumentation. When I can’t verify it, I put it in my “to be verified (TBV)” column.
I was working on a large 100 MBTU gas burner. I was asked to come in after two other technicians were not able to stabilize the burner performance. We trusted in initial burner settings the manufacturer recommended and we verified its performance with a combustion analyzer. The initial settings were changed. The operator, manager, and process engineer had trouble believing the setting. The burner was performing well, and they felt my adjustments were wrong. Running their continuous mix asphalt mix plant at 200 tn/hr usually would indicate a 30% firing rate. The new firing rate was only 20%. Their energy bill was now cut by a third. They verified by asking, “Why is the material being heated to a temperature that required 2/3 the throttle required before?” Good question. In a nutshell, oxygen (O2) should run between 11% and 14% with CO under 250 ppm. Previous burner technicians adjusted the O2 to 17%. We only need enough O2 for complete combustion. Standard practice is to introduce just enough extra excess air (EA) to insure complete combustion. 17% O2 has much more air going through the process than slowing down of the air flow at 14% O2. We are heating volumes of air pouring out the stack at 200°. Furthermore, all of that cold excess air is cooling the aggregate being heated and dried.
Switching gears, continuous weighing/solids impact flow metering is a constant quality control challenge. The important thing is reliable feedback. The volumetric method of weighing (monitoring the speed of the auger, rotary valve, belt, etc.) is not always adequate. Sometimes belt scales, impact plates, and mass flow meters are not as failproof as the application requires. Solids Impact Flow Meters (Continuous weigh devices)--within limits--do a good job and, in some applications, an excellent job. Depending on the product being weighed, gravimetric rate readings should be viewed with skepticism. If material sticks to the component resting on the load cell, the rate indication will increase without the rate really increasing. That’s like thinking you are driving at 70 mph but actually doing 60 mph.
When we have problems--whether it is an issue with product hanging on our load cell component, the scale needs maintenance, or we are assuming volumetrically--we find neither method is working for us. In this case, cross checking one against the other can raise red flags or comfort us that the process is being measured and controlled to specifications. Volumetric measuring does not work when your bin runs empty or when bridging occurs. It may not work well enough if your product density changes such as with pulverized recycled asphalt shingles.
When volumetric alone does not get the job done, the combination of cross checking gravimetric with volumetric causes many red flags as your process is continuously running. Compare a volumetric indicator with a gravimetric indicator. When calibrated, they should read nearly the same. When the readings are not nearly the same, taking actions like cleaning the plate, filling the bin, clearing a rock from a belt scale, or stopping the process may be required.
Clarence Richard is controls engineer, EZ- Flo Scales and Controls, Minnetonka, MN. For more information, call 952-939-6000 or visit www.EzFloWeighing.com